

Fig. 2. Stereoscopic views of the crystal structures. (a) Compound (1) down c; (b) compound (2) down b.

dihedral angles are 89.1 (1) and 90.9 (1)°, respectively. This shows that the Cl atoms may take the apical positions in the coordination sphere more easily than the perchlorate anions.

The crystal structures are shown in Fig. 2. The structure of (1) is isostructural with that of hexakis-(pyrazole)Ni^{II} nitrate (Reimann, Santoro & Mighell, 1970), whereas (2) is isostructural with the corresponding copper(II) (Mighell, Santoro, Prince & Reimann, 1975) and nickel(II) (Reimann, Mighell & Mauer, 1967) complexes. There are no contacts $X(-H)\cdots Y$, where X = C or N and Y = O or Cl, less than the sum of the van der Waals radii (Taylor &

Kennard, 1982) in these crystal structures. Therefore there are no hydrogen bonds, but the structures are held together through weak van der Waals interactions.

References

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324. HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.

- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- LUMME, P. O., LINDELL, E. & KIVIMÄKI, P.-R. (1984). XI Nordiske Strukturkjemikermøte, Tromsø, 1984. Program og Abstrakter, p. 33.
- LUMME, P. O., LINDELL E. & MUTIKAINEN, I. (1984). XI Nordiske Strukturkjemikermøte, Tromsø, 1984. Program og Abstrakter, p. 61.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MIGHELL, A., SANTORO, A., PRINCE, E. & REIMANN, C. (1975). Acta Cryst. B31, 2479–2482.
- REIMANN, C. W., MIGHELL, A. D. & MAUER, F. A. (1967). Acta Cryst. 23, 135-141.
- REIMANN, C. W., SANTORO, A. & MIGHELL, A. D. (1970). Acta Cryst. B26, 521-526.
- SIGEL, H. (1983). Editor. Metal Ions in Biological Systems. Vol. 15. New York, Basel: Marcel Dekker.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY system – version of 1976. Tech. Rep. TR-466. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
- TAYLOR, R. & KENNARD, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.
- Ткобименко, S. (1972). Chem. Rev. 72, 497-509.
- TRUTER, M. R. & VICKERY, B. L. (1973). J. Appl. Cryst. 6, 323; Program No. 124.

Acta Cryst. (1988). C44, 970-973

The Structure of $[Au-\mu-{3,5-(C_6H_5)_2C_3HN_2}]_3Cl_2$: a Trinuclear Mixed-Valence Gold Pyrazolate Complex

BY RAPHAEL G. RAPTIS, H. H. MURRAY AND JOHN P. FACKLER JR*

Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A&M University, College Station, Texas 77843, USA

(Received 6 November 1987; accepted 15 February 1988)

Abstract. Tris- μ -(3,5-diphenyl-1-pyrazolyl-N,N')-dichlorogold(III)digold(I), $M_r = 1319 \cdot 2$, monoclinic, $P2_1/c, a = 16.477$ (3), b = 9.626 (2), c = 25.686 (4) Å, $\beta = 91.16$ (1)°, V = 4073 (1) Å³, $D_x = 2.15$ Mg m⁻³, Z = 4, $\mu = 10.93 \text{ mm}^{-1}$, λ (Mo Ka) = 0.71073 Å, F(000) = 2464, T = 298 K. The structure consists of a discrete trinuclear gold pyrazolate molecule containing a four-coordinate gold(III) center with *trans* chloride ligands and two two-coordinate gold(I) centers. The Au atoms are symmetrically bridged by the pyrazolate

* To whom all correspondence should be addressed.

0108-2701/88/060970-04\$03.00

© 1988 International Union of Crystallography

anion ligands. The nine-membered heterocyclic ring of the complex is almost planar, with the metal-atom centers separated by distances of 3.334(1)–3.383(1) Å. Convergence to final conventional R values of R = 0.0443 and wR = 0.0398 was obtained using 208 variable parameters and 2703 reflections with $F_o^2 > 3\sigma(F_o^2)$.

Introduction. Our studies of dinuclear and trinuclear late transition metal complexes (Basil *et al.*, 1985; Murray, Briggs, Garzón, Raptis, Porter & Fackler, 1987) have led to the characterization of complexes containing gold in the I, II, III as well as mixed I/III oxidation states. The structural features of complexes containing gold in more than one oxidation state are of particular interest. We are focusing our efforts on understanding the two-electron oxidation of Au^{1}/Au^{1} dinuclear systems and the two-electron reduction of Au^{11}/Au^{111} systems. Both processes can lead to homovalent Au^{11}/Au^{11} complexes with formation of a metal-metal bond, or to mixed-valence Au^{1}/Au^{111} complexes.

Oxidative addition of halogens to the dinuclear Au¹ ylide $[Au(CH_2)_2P(C_6H_5)_2]_2$ gives, in a stepwise manner, the homovalent Au^{11} , $[Au(CH_2)_2P(C_6H_5)_2]_2X_2$, and Au^{III}, $[Au(CH_2)_2P(C_6H_5)_2]_2X_4$ species (Schmidbaur & Franke, 1975). Reductive elimination from the Au^{III} complex yields either the homovalent Au^{II} or the heterovalent Au^I/Au^{III} complex (Basil, 1983; Raptis, Porter, Murray & Fackler, 1988). The two-electron oxidative addition to the Au^{I} complex $[Au(CH_{2}) P(S)(C_6H_5)_2]_2$ can also result in homo- or heterovalent products (Mazany & Fackler, 1984), the latter with concomitant rearrangement of the bridging ligand. The oxidation of the trinuclear complex $[Au-\mu-{3,5-(CH_3)_2}-$ C₃HN₂}], with I₂ (Minghetti, Banditelli & Bonati, 1979) produced the heterovalent Au¹/Au¹¹¹ species, as was suggested by its Mössbauer spectrum (Katada et al., 1983).

Here we report the crystal structure of the mixedvalence trinuclear gold complex $[Au-\mu-\{3,5-(C_6H_5)_2-C_3HN_2\}]_3Cl_2$, obtained from the reaction of $AuCl_3-(C_5H_5N)$ and $Na[3,5-(C_6H_5)_2C_3HN_2]$.

Experimental. AuCl₃(C₅H₅N) was prepared following a literature procedure (Gibson & Colles, 1931). 3,5-Bis(phenyl)pyrazole was purchased from Fluka and deprotonated with sodium hydride. The trinuclear complex $[Au-\mu-{3,5-(C_6H_5)_2C_3HN_2}]_3Cl_2$ was prepared by the addition of Na[3,5-(C₆H₅)₂C₃HN₂] to an equimolar solution of AuCl₃(C₅H₅N) in tetrahydrofuran. Single crystals suitable for X-ray analysis were obtained by recrystallization from a tetrahydrofuran/ diethyl ether solution.

Single multi-faceted red crystal of approximate dimensions $0.10 \times 0.40 \times 0.05$ mm mounted in a random orientation on a glass fiber. Monoclinic

symmetry suggested on the basis of interaxial angles and confirmed by a Delaunay reduction. Axial lengths checked by comparison with the interlayer spacings observed in axial photographs. Refined cell parameters obtained from the setting angles of 20 reflections with $20 < 2\theta < 30^{\circ}$. Data collection carried out at room temperature using the ω scanning technique in bisecting geometry (Nicolet R3m/E diffractometer, graphitemonochromated Mo $K\alpha$ radiation). Intensities measured for 5934 unique reflections (h < 18, k < 11, |l| < 28) with $0 < 2\theta < 45^{\circ}$, no symmetry-equivalent reflections were collected. Scan rate variable, 3-30° min⁻¹; scan range -0.8 in ω from $K\alpha_1$ to +0.8from $K\alpha_2$. Backgrounds estimated from a 96-step peak profile. Three low-angle standards $(\overline{2}0\overline{6}, \overline{1}10, 0\overline{2}\overline{1})$ measured every 97 data. The data were corrected for decay by scaling on the three standards which all decayed similarly ($\sim 2\%$). Corrections for absorption applied empirically on the basis of azimuthal scans of ten reflections spanning a range of 2θ values (minimum and maximum transmission 0.035 and 0.059 respectively). Crystal solution and refinement carried out using the SHELXTL collection of crystallographic software (Sheldrick, 1978). Au position determined from a direct-methods program solution; all remaining non-hydrogen atoms located on difference Fourier maps. Phenyl rings refined as idealized polygons $(C-C = 1.395 \text{ Å}, C-C-C = 120^{\circ})$ using H atoms placed in calculated positions with fixed thermal parameters $[U(H) = 0.08 \text{ Å}^2]$. All non-hydrogen atoms refined anisotropically. Refinement based on F with weights of the form $w^{-1} = [\sigma^2(F) + 0.0002(F^2)]$. The value of g = 0.0002 was refined by fitting $(F_o - F_c)^2$ to $[\sigma^2(F) + gF^2]/k$ (k scale factor) to put weights on an approximately absolute scale. Scattering factors, including terms for anomalous dispersion, taken from International Tables for X-ray Crystallography (1974). Convergence to conventional R values of R = 0.0443and wR = 0.0398 obtained using 208 variable parameters and 2703 reflections with $F_o^2 > 3\sigma(F_o^2)$. For final cycle maximum shift/ $\sigma = 0.01$ with a goodness-of-fit indicator of 1.189. Residual electron density on final difference Fourier map of +1.53 and -0.8 e Å⁻³ in the vicinity of C(2).*

Discussion. The product obtained from the reaction of $AuCl_3(pyridine)$ with $Na[3,5-(C_6H_5)_2C_3HN_2]$ is a trinuclear mixed-valence gold-pyrazolate complex. The unit cell contains four molecules of this complex and no solvent molecules. A perspective view of the complex is shown in Fig. 1. Atomic positional and equivalent

^{*} The highest peak of residual electron density $[1.63 \text{ \AA} \text{ from } C(2)]$ could be accounted for by partial chlorination of this position. Halogenation of the 4-position of pyrazolates is a commonly observed feature of this chemistry. As the SOF of this chlorine atom refined to <0.20, it was not included in the final refinement of the structure.

C(9)

C(11) C(12)

C(16)

C(31) C(32)

C(33) C(34)

C(35)

C(36) C(41)

C(42)

C(43) C(44)

C(45)

C(46) C(61)

C(62)

C(63) C(64)

C(65) C(66)

C(71)

C(72) C(73) C(74) C(75)

C(76) C(91)

C(92)

C(93)

C(94)

C(95) C(96)

isotropic thermal parameters for all non-hydrogen atoms are presented in Table 1.* Bond angles and distances are summarized in Table 2.

The structure reported here contains an almost Au(1) planar nine-membered metallocycle, [Au-N-N]₃. The Au(2) Au(3) carbon atoms of the pyrazolate ligands deviate as much CI(1) as 0.33 (5) Å from the best-fit plane of the metal-CI(2) N(Ì) locycle while the phenyl groups rotate out of this plane. N(2) N(3) The overall symmetry of the complex is $C_{2\nu}$ (assuming N(4) free rotation of the phenyl groups). N(5) N(6) C(1)

Two of the gold atoms, Au(2) and Au(3), are two-coordinate linear [178.2 (6), 179.0 (7)°] N-bound C(2) C(3) Au^I centers. The third gold atom, Au(1), is four-C(4) C(5) coordinate square planar (within 1.3°) Au^{III} with trans C(6) chloride and pyrazolate ligands. The angles formed C(7) C(8) between the chloride and pyrazolate ligands bound to Au(1) are 90 (2)°. The Au-Cl bond lengths measured here, 2.274 (7) and 2.284 (7) Å, are typical of trans C(13) Au^{III} complexes (Porter, Murray & Fackler, 1987). C(14) C(15)

It is interesting to compare the structure of [Au- μ -{3,5-(C₆H₅)₂C₃HN₂}]₃Cl₂ reported here, containing an Au^I₂Au^{III} metal core, with the structure of its unoxidized precursor $[Au-\mu-\{3,5-(C_6H_5),C_3HN_2\}]_3$ (Murray, Raptis & Fackler, 1988) containing an Au Au^{III}–N The bonds. core. 1.986 (14) and 2.000 (15) Å, are similar in length to the Au^I-N bonds. 1.984 (16)-2.013 (14) Å, in Au¹₂Au¹¹¹ and statistically indistinguishable from the Au-N bond length in Au 1.978 (9) Å. The geometries of the pyrazolate rings remain unaffected by the oxidation states of the metals of the trinuclear core. The N-N, N-C and C-C bond lengths measured in the Au₂Au^{III} complex described here range between 1.364 (21) and 1.417 (21),

*Lists of structure factors, anisotropic thermal parameters, additional bond lengths and angles and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44769 (54 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

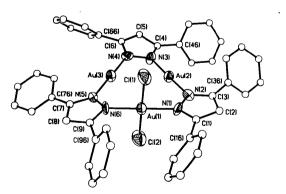


Fig. 1. A perspective view of the $[Au-\mu-\{3,5-(C_6H_5)_2C_3HN_2\}]_3Cl_2$ structure. Thermal ellipsoids have been drawn at the 50% probability level. H atoms have not been included. C atoms of arbitrary radii.

Table	1. Atomic coordinates $(\times 10^4)$ and equivalent
	isotropic thermal parameters $(Å^2 \times 10^3)$

x	У	z	U/U_{eq}
10624 (1)	5972 (1)	2350(1)	41 (1)*
8856 (1)	5949 (1)	2970 (1)	42 (1)*
10601 (1)	6420(1)	3656 (1)	44 (1)*
10491 (4)	8289 (7)	2200 (3)	73 (3)*
10737 (4)	3647 (7)	2513 (3)	79 (3)*
9590 (9)	5695 (18)	1941 (5)	42 (7)*
8859 (10)	5696 (18)	2204 (6)	45 (7)*
8825 (9)	6247 (18)	3738 (5)	44 (6)*
9546 (9)	6592 (18)	4020 (5)	44 (6)*
11665 (8)	6210 (17)	3292 (6)	41 (6)*
11645 (8)	6243 (18)	2761 (6)	43 (7)*
9420 (12)	5633 (20)	1424 (7)	42 (6)
8554 (12)	5628 (22)	1333 (8)	53 (6)
8262 (13)	5685 (23)	1831 (8)	50 (6)
8196 (12)	6302 (24)	4063 (8)	52 (6)
8476 (12)	6718 (21)	4567 (8)	50 (6)
9327 (11)	6910 (21)	4496 (7)	38 (6)
12456 (12)	6143 (22)	3450 (7)	44 (6)
12949 (11)	6099 (21)	3011 (7)	43 (5)
12418 (12)	6188 (22)	2571 (7)	45 (6)
10063 (8)	6501 (14)	619 (6)	69 (7)
10664	6469	244	89 (9)
11304	5526	292	90 (9)
11342	4615	714	82 (9)
10741	4647	1089	60 (7)
10101	5590	1089	52 (6)
7104 (7)	6869 (12)	2261 (5)	
6277	6950	2365	41 (6) 53 (7)
5749	5922	2303	53 (7)
6047	4812	1891	63 (7)
6873	4730	1788	55 (7) 49 (6)
7402	5759	1973	49 (6)
6757 (8)	6925 (12)	4033 (5)	54 (7)
5956	6650	3879	65 (7)
5773	5460	3589	
6391	4546	3454	54 (7)
7192	4822	3608	71 (8)
7375	6011	3898	46 (6)
10464 (9)	8360 (15)	4833 (4)	41 (5)
10986	8788	5236	63 (7)
10955	8144	5722	85 (8) 74 (8)
10402	7073	5804	
9880	6645	5401	86 (9)
9911	7289	4915	67 (7) 51 (6)
12264 (7)	6456 (15)		51 (6)
12582	6391	4425 (6)	75 (8)
13366	5886	4932	66 (7)
13831	5446	5022	76 (8)
13513		4606	83 (9)
12729	5511 6016	4099	79 (8)
		4009	38 (5)
13171 (9) 13477	5073 (14) 5101	1865 (6)	74 (8)
13283	6202	1363 1029	89 (9) 72 (7)
12784	7275	1199	72 (7)
12479	7246	1701	90 (9)
12672	6145		67 (7)
12072	0143	2034	51 (6)

* Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

Table 2. Bond lengths (Å) and angles (°)

Au(1)-Cl(1)	2.274 (7)	N(2)-C(3)	1.360 (26)
Au(1)-Cl(2)	2.284 (7)	N(3)-C(4)	1-345 (25)
Au(1)–N(1)	2.000 (15)	N(4)-C(6)	1.318 (24)
Au(2)-N(2)	1.984 (16)	N(5)-C(7)	1.359 (23)
Au(2)-N(3)	1.995 (13)	N(6)-C(9)	1.375 (23)
Au(3)–N(4)	1.998 (15)	C(1) - C(2)	1.441 (28)
Au(3)-N(5)	2.013 (14)	C(2) - C(3)	1-375 (29)
Au(1)-N(6)	1.986 (14)	C(4)-C(5)	1.424 (28)
N(1)-N(2)	1.392 (22)	C(5)-C(6)	1.430 (27)
N(3)-N(4)	1.417 (21)	C(7)-C(8)	1.403 (26)
N(5)-N(6)	1.364 (21)	C(8)-C(9)	1.419 (26)
N(1) - C(1)	1.353 (23)		(,
Cl(1) - Au(1) - Cl(2)	178-8 (2)	N(4)-Au(3)-N(5)	179-0 (7)
Cl(1) - Au(1) - N(1)	87.9 (5)	Au(1)-N(1)-N(2)	118.7 (11)
Cl(1) - Au(1) - N(6)	92.2 (5)	Au(2)-N(2)-N(1)	120.1 (11)
Cl(2) - Au(1) - N(1)	91.8 (5)	Au(2)-N(3)-N(4)	120-1 (10)
CI(2) - Au(1) - N(6)	88.0 (5)	Au(3) - N(4) - N(3)	117.9 (10)
N(1) - Au(1) - N(6)	179.6 (8)	Au(3) - N(5) - N(6)	117.3 (10)
N(2) - Au(2) - N(3)	178-2 (6)	Au(1) - N(6) - N(5)	$122 \cdot 1 (10)$
(-) - (-)		(-) ((0) ((0)	

1.345 (25) and 1.375 (23), and 1.375 (29) and 1.441 (28) Å respectively and compare well with the corresponding bond lengths, 1.38 (2), 1.36 (2) and 1.42 (2) Å, measured in the Au_3^1 trimer. The nonbonding Au...Au distances in $Au_2^1Au^{111}$ range between 3.348 (1) and 3.383 (1) Å and on the average are equal in length to the 3.368 (1) Å distance observed for Au_3^1 .

The complex reported here, $Au_2^{I}Au^{III}$, is the twoelectron oxidation product of the previously reported Au_3^{I} (Murray, Raptis & Fackler, 1988) complex. The oxidation of one of the three Au atoms from the I to the III state does not alter significantly the geometry of the nine-membered metallocycle or the bridging pyrazolate rings. However, the high symmetry, D_{3h} (ignoring the phenyl groups), observed for the Au_3^{I} complex which crystallized in the crystallographic space group $R\bar{3}c$, is reduced to $C_{2\nu}$ in the $Au_2^{I}Au^{III}$ complex which crystallizes in the space group $P2_1/c$. The yet unknown analogous complexes $Au^{I}Au_2^{III}$ and Au_3^{III} will have $C_{2\nu}$ and D_{3h} symmetries respectively. Work towards the characterization of these species is under way.

These studies are supported by the National Science Foundation, NSF 8708625, the Welch Foundation and the Texas A&M University Center for Energy and Mineral Resources.

References

- BASIL, J. D. (1983). PhD Thesis. Case Western Reserve Univ., USA.
- BASIL, J. D., MURRAY, H. H., FACKLER, J. P. JR, TOCHER, J., MAZANY, A. M., DELORD, T. J., BANCROFT, B. T., KNACHEL, H., DUDIS, D. S. & MARLER, D. O. (1985). J. Am. Chem. Soc. 107, 6908–6915.
- GIBSON, C. S. & COLLES, W. M. (1931). J. Chem. Soc. p. 2407.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KATADA, M., SATO, K., UCHIDA, Y., IIJIMA, S., SANO, H., WEI, H. H., SAKAI, H. & MAEDA, Y. (1983). Bull. Chem. Soc. Jpn, 56, 945-946.
- MAZANY, A. M. & FACKLER, J. P. JR (1984). J. Am. Chem. Soc. 106, 801–802.
- MINGHETTI, G., BANDITELLI, G. & BONATI, F. (1979). Inorg. Chem. 18, 658-663.
- MURRAY, H. H., BRIGGS, D. A., GARZÓN, G., RAPTIS, R. G., PORTER, L. C. & FACKLER, J. P. JR (1987). Organometallics, 6, 1992–1995.
- MURRAY, H. H., RAPTIS, R. G. & FACKLER, J. P. JR (1988). Inorg. Chem. 27, 26–33.
- PORTER, L. C., MURRAY, H. H. & FACKLER, J. P. JR (1987). Acta Cryst. C43, 877-880.
- RAPTIS, R. G., PORTER, L. C., MURRAY, H. H. & FACKLER, J. P. JR (1988). Organometallics. Submitted for publication.
- SCHMIDBAUR, H. & FRANKE, R. (1975). Inorg. Chim. Acta, 13, 79-84.
- SHELDRICK, G. M. (1978). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1988). C44, 973-975

The Structure of the Tetraphenylarsonium Salt of the Trichloro(pentane-2,4-dionato)nitrosyltechnetium(II) Anion

By D. S. Brown, J. L. Newman and J. R. Thornback

Department of Chemistry, Loughborough University of Technology, Loughborough, Leics LE11 3TU, England

(Received 11 August 1987; accepted 18 January 1988)

Abstract. Tetraphenylarsonium trichloro(pentane-2,4dionato)nitrosyltechnetate(II), $[As(C_6H_5)_4][Tc(NO) Cl_3(C_5H_7O_2)], M_r = 717.4,$ triclinic, $P\overline{1}$, a =10.261 (4), b = 11.261 (10), c = 13.686 (10) Å, $\alpha =$ $\beta = 91.9$ (5), 101.7(5), $\gamma = 97.3 (5)^{\circ}$, U =1532.93 Å³, Z = 2, D_m not measured, $D_x =$ 1.554 g cm^{-3} , $\lambda(\operatorname{Mo} K\alpha) = 0.71069 \text{ Å},$ $\mu =$ $18 \cdot 15 \text{ cm}^{-1}$, F(000) = 718, T = 293 K, R = 0.076 for2008 observed reflexions with $I > 3\sigma(I)$. The anion $[T_{c}(NO)Cl_{3}(C_{5}H_{7}O_{2})]^{-}$ has a distorted octahedral geometry with three Cl atoms, a bidentate pentane-2,4-dione ligand and the nitrosyl trans to either of the equivalent oxygens. The other trans position is occupied by a Cl atom resulting in a disordered structure. Introduction. The use of technetium-99m ($t_{1/2} = 6.02$ h) in the field of nuclear medicine is well established, while technetium-99 ($t_{1/2} = 2 \cdot 1 \times 10^5$ a) enables extensive research into the coordination chemistry of the element. We are interested, in particular, in the synthesis of Tc complexes as possible radiopharmaceuticals in which the Tc atom is in a low oxidation state. Stabilization of low oxidation state requires the presence of a π -acid ligand, which in the complexes we have studied is the NO group. Recently we reported the structure of the complex [TcNOCl₄(CH₃OH)]⁻ (Brown, Newman, Thornback & Davison, 1987) and its synthesis on a no-carrier added (^{99m}Tc) scale (Cheah, Newman, Nowotnik & Thornback, 1987). This complex is an

© 1988 International Union of Crystallography